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EXECUTIVE SUMMARY 

This study was implemented to assist the Alaska Department of Transportation and 

Public Facilities (ADOT&PF) with its life cycle costs for the Alaska Highway Bridge Inventory. 

The study consisted of two parts. Part 1 involved working with regional offices of ADOT&PF to 

assemble initial costs, construction costs, and maintenance and repair for a sample of the 

different bridge types. As part of that effort, ADOT&PF provided the research team with Pontis 

(the AASHTO Bridge Management software) that was being used by the department. The 

software has since been updated and is now called AASHTOWare (2014). The results of this 

effort were limited by the available data. Presently, it is not feasible to finalize life cycle costing 

for the Alaska Highway Bridge Inventory because each region files its data in a different format 

and archived construction costs are extremely difficult to find. It is recommended that 

ADOT&PF develop a simple Bridge Management archiving system that is available online. This 

archiving system can then be used to maintain bridge records for initial construction, 

maintenance, and rehabilitation costs, and their relationship to the bridge inventory records. 

Part 2 involved an attempt to identify how a bridge that was scheduled for replacement 

deteriorated over time. The initial plan was to take samples from the steel members of the Noyes 

Slough Bridge and identify their stress-strain response to load. The proposed research plan was 

to compare the behavior of steel subjected to load over its lifetime with that of new steel having 

nearly the same material properties. However, because of environmental constraints, this portion 

of the work was not funded. Therefore, the research findings presented are limited to the 

available resources of field testing and computer simulation to evaluate structural response and 

compare it with that of the initial bridge, before it had aged. The research results showed 

noticeable and measurable differences in the strain behavior of the Noyes Slough Bridge at the 

end of its life cycle when compared with its theoretical beginnings. Strain gauges were used to 

calculate strength loss. Using measured changes in strain in the bridge girders, a comparison was 

made between the bridge’s condition at the time of evaluation and its condition at the time of 

original construction. The results illustrated that the structure had yielded at several points within 

the girders. These strain values indicate that the structure may have been overloaded at least once 

during its lifetime.  

The application of a service life cycle costing approach has a number of advantages over 

the traditional life cycle cost approach.  A bridge has essentially three lives; structural, functional 
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and service.  All of these lives are highly variable.  For example the structural life of a bridge can 

be extended almost indefinitely with the right repairs.  The service life approach does not assume 

a life.  Rather it estimates the life that provides the lowest life cycle cost.  Doing so allows 

comparisons of alternatives assuming an infinite planning horizon. 
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 INTRODUCTION 

1.1 General  

The life of a bridge can be defined in multiple ways; structural, functional and service 

life. The most common of these is the structural life, which can be defined as the point at which 

the cost of repairing the bridge due to a structural element becomes economically unattractive. 

The structural life of a bridge is critical, because at some point the bridge requires repair, load 

reduction, or replacement. At this point, the associated costs should be compared to select the 

most cost-effective alternative.  

The functional life of a bridge is reached when a bridge no longer serves the need of the 

public because of increased traffic, vehicle loading, or other required functions. As with the 

structural life, there are multiple alternatives that correct functional deficiencies, including 

replacement and upgrading, or rerouting traffic. Again, each alternative can be analyzed to 

ascertain which is the most cost-effective. 

The service life of a bridge is defined as that which minimizes its life cycle costs. The 

advantage of this approach is the ability to merge functional and structural costs into a single 

analysis. The service life of a bridge can be determined by computing either present worth or 

equivalent annual costs, including the initial cost, for each year until a minimum life cycle cost is 

found. The service life of the bridge does not mean the bridge has reached either its structural or 

functional life. Rather the service life is simply the point at which life cycle costs begin to 

increase after being at a minimum. Ideally, actual cost data adjusted for inflation would be used 

to establish service life for each structural type. Unfortunately, those data do not exist, which 

leaves two options: develop anticipated costs based on anecdotal data or develop a process that 

can be applied as data become available. After a consultation with ADOT&PF, it was decided 

that the second option would be chosen. That process is presented in Chapter 3. 

The Noyes Slough Bridge (#0283), in service for over 60 years, provides an excellent 

example of the life cycle of a bridge. This three-span composite steel girder, 172-foot-long 

bridge had a roadway width of 30 feet (Figure 1.1, and 1.2). A 5-foot-wide sidewalk was built on 

either side of the bridge in 1951. The structure was designed for AASHTO H20-44 highway 

loads. The steel girders met the ASTM A242-4b. The 7¼-inch-thick reinforced concrete deck 

was designed for 3000 psi 28-day concrete compressive strength. In 1982, about 850 square feet 
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of deck surface (the deck was 3843 sq ft) was delaminated and overlaid with 1 inch of polymer 

concrete.  

Figure 1.1 Side view of the Noyes Slough Bridge 

Figure 1.2 Westbound view of Noyes Slough Bridge 

Recently, the Noyes Slough Bridge, located in Fairbanks, Alaska, near the intersection of 

Illinois Street and College Road, was replaced. Six decades of traffic, as well as extreme thermal 

expansion and contraction, had taken its toll on the bridge’s structural integrity. This research 
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provides an estimate of strength loss in the structural steel of the bridge, as well as the bridge’s 

most economical life cycle.  

1.2 Overview and Scope of Work 

When the Noyes Slough Bridge was considered for demolition, a project to evaluate the 

structure’s remaining life was envisioned. The steel would be reclaimed, and strength tests would 

be conducted. The bridge’s strength loss over its service time and its structural life cycle would 

be learned. Due to unforeseen situations and higher-priority projects, the bridge was not 

demolished during the study period; thus, an alternate course of action was planned.  

A SAP2000 model of the bridge was created for use in determining the deflections of the 

bridge as though it were newly constructed. After the bridge was instrumented, the structure was 

tested by driving and stopping on the bridge at predetermined locations. The test vehicle was a 

fully loaded ADOT&PF International 7600i dump truck. The dump truck was parked at locations 

to establish the highest shear forces and moments in the support girders. A CR5000 Campbell 

Scientific data logger was used to record data from strategically placed thermistors, 

accelerometers, and strain gauges. Deflections recorded for maximum shear and moment tests 

were used to assess strength loss. Using this information, a theoretical life cycle was calculated.  

It was proposed that construction and maintenance data for bridges in Alaska would be 

gathered from ADOT&PF’s master archive list and used for cost comparison with other similar 

standing highway bridges in the state.  

In other words, the study was performed in three stages: (a) Evaluate the remaining life of 

the Noyes Slough Bridge by experimentally determining its condition; (b) create a SAP2000 

three-dimensional finite element model of the bridge and analyze the structure for loaded dump 

trucks; and (c) based on ADOT&PF records, perform an economic analysis of highway bridges 

throughout Alaska. 

1.3 CR5000 Data Monitoring System 

The programmed Campbell Scientific CR5000 data logger (see Figure 1.4) is a rugged, 

high-performance data acquisition system with a built-in keyboard, graphics display, and 

PCMCIA card slot. It combines 16-bit resolution with a maximum throughput of 5000 

measurements per second, has multiple input channels, and can measure a large number of 

sensors.  
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The integrated keyboard and display screen on the CR 5000 data logger allows the user to 

program, manually initiate data transfers, and view data on-site during testing. The integrated 

PCMCIA slot accepts memory cards up to 2 GB for stand-alone data collecting. The CR5000 

includes a current excitation channel that allows a direct connection of PRTs or other sensors 

that use current excitation.  

A battery-backed SRAM and clock ensure that data, programs, and accurate time are 

maintained while the data logger is disconnected from the main power source. The CR5000 can 

be used to collect and store experimental data; it can control peripherals and has proven valuable 

for cold weather applications.  

 

Figure 1.4 Campbell Scientific CR5000 data acquisition system 

1.4 Instrumentation  

Installation of the sensors required a staging platform, so a rolling platform was designed 

to roll underneath the girders using the flanges as a guide (see Figure 1.5). Each gauge was 

programmed into the data logger and installed on the bridge. A 12V deep cycle car battery was 

used as a power source, and data was recorded and stored every time a vehicle triggered the data 

logger.  

Using as-built bridge construction drawings provided from ADOT& PF, a three-

dimensional model was prepared in SAP2000. Using this computer model, the bridge response 
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was simulated and compared with experimental data collected from the bridge site where a 

loaded dump truck was positioned at various locations on the bridge. These tests were used to 

correlate bridge behavior in relation to expected behavior when the bridge was new.  

Finally, research was conducted to evaluate maintenance and construction data that was 

provided by ADOT&PF.  

 

Figure 1.5 Rolling platform and data collection staging area 
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 LITERATURE REVIEW 

Of the approximately 600,000 bridges in the United States, 24% are considered 

structurally deficient or functionally obsolete. This pattern continues when focusing on Alaska. 

Of the state’s 1156 bridges, about 22% are considered in the same state of disrepair as bridges in 

other states (Ahmad, 2011). Many of these bridges have to be repaired or replaced. The question 

is, Which bridge type is the most economical? And another, How much money can be saved if 

bridges are replaced with the longest lasting, lowest construction and maintenance cost bridge?  

Low-cost sensors and data collection systems allow rapid collection of data that may 

indicate bridge health including loss of strength. Such information can be the first step in 

determining many previously unknown facets of bridges, namely an accurate life cycle, an 

economical life cost, and the type of bridge that is most cost-effective (Kerley and Lwin, 2011; 

Kendall, Keoleian, and Helfand, 2008; Hawk, 2003). Other associated life cost studies were 

reported by (Zhang, et al, 2003, 2005 and 2008).  

Similar economics studies have been done on Bascule bridges in Chicago, Illinois, where 

the bridge life exceeded the customary 75-year life cycle (Krizek et al., 2003). Their study found 

that 

the useful life is defined as the period from the initial construction to the point where the 

reconstruction cost is greater than the initial cost. Most of the Chicago bridges studied 

have never been reconstructed and have had a useful life greater than 75 years, which is 

commonly assumed to be bridge design life. The first Chicago-type Bascule, the Cortland 

Street Bridge, is currently more than 102 years old, page 2. 

Krizek et al. (2003) also determined that 

the results of their brief study showed that (a) the achievable useful life of a bascule 

bridge can be more than 100 years, (b) the total life cycle cost of a 100-year-old bascule 

bridge can be less than five times its initial cost, and (c) timely [maintenance, repair, and 

rehabilitation] actions can lower the total life cycle cost of the bridge, page 6. 

Therefore, clearly there is sparse data or supporting evidence that shows these bridges are 

capable of withstanding 75 years of service, even though many are being used long after their 

expiration date. America’s infrastructure is aging, and sufficient data to help us understand 

exactly what is happening to aging bridges is unavailable. Even though Alaska is younger due to 
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statehood being more recent in comparison with the rest of the United States, the situation of 

having insufficient data is no different.  

Consider that throughout the useful life of bridge structures, each bridge is subjected to 

routine and periodic maintenance, occasional rehabilitation, and some replacement work. Some 

parts of the bridge deteriorate faster than others, and in some cases, a structure can experience 

overloads or crash loads caused by different types of traffic accidents. Therefore, bridges require 

a number of expenditures for various activities during their useful life (Hawk, 2003).  

For bridge structures, maintenance and rehabilitation may be a significant part of the 

Bridge Life-Cycle Cost Analysis (BLCCA), which can be expressed by 

LCC DC CC MC RC UC SV       (1) 

where  

LCC = life cycle cost; 

DC = design cost; 

CC = construction cost;  

MC = maintenance cost; 

RC = rehabilitation cost; 

UC = user cost, and 

SV = salvage cost. 

Typically, user costs for bridge structures are a small part of the costs. The majority of 

these costs occur during traffic congestion, bridge maintenance, or bridge rehabilitation. 

Mohammadi et al. (1995) illustrated that a single parameter may be used to quantify the bridge 

decision-making process. In this study, three elements were combined in the BLCCA: (a) bridge 

condition rating, (b) costs resulting from work on the bridge, and (c) bridge life expectancy. 

Mohammadi et al. (1995) illustrated this as follows: 

( , , )VI F r c t  (2) 

where  

VI = bridge value index,  

F = objective function, 

r = condition rating, 

c = costs, and  

t = time or bridge service life expectancy 

Life cycle costs have been used in the transportation field for some time; however, 

disagreement remains as to which cost items should be included with a given analysis. Delay 
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costs, fuel costs, vehicle operating costs, etc., are at the heart of the controversy. Other non-

agency costs such as environmental factors, expected life, changes in traffic patterns, the 

influence of overloaded vehicles, deterioration rates, are difficult to estimate.  In summary, 

bridge life expectancy is not well defined; bridge behavior will affect a bridge’s expected life 

and can change with type of materials, climatic exposure, traffic loads, overloads, and vehicle 

crashes with the bridge structure (Hawk, 2003).  

This study examines expected costs for different bridge types in the state of Alaska and 

the aged response of the Noyes Slough Bridge. Initially, an evaluation of the condition of the 

structural steel bridge members was proposed, sampling and testing their response in relationship 

to the response of a new steel member. This idea was abandoned because of the risks of handling 

and the expense associated with containment of the lead paint on the existing steel members. 

Therefore, the second part of this study was limited to evaluating the bridge girder response to a 

heavy truck load in an effort to determine the overall condition and remaining life of the 

structural elements. 
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 NOYES SLOUGH BRIDGE, PART 1 

3.1  General Information 

The initial portion of the analysis of the Noyes Slough Bridge is based on experimental 

results that were found by measuring strain, accelerations, and member temperature. 

Measurements were taken using weldable strain gauges, accelerometers, and thermistors. The 

intention with this approach was to provide a better understanding of how a small multispan 

bridge in Alaska reacts to daily traffic loading. Data from the measurements would be useful in 

determining aspects of the bridge’s characteristics, such as the life cycle of the major structural 

carrying members or strength loss over time.  

3.2  Construction/Planning 

To fully examine how the Noyes Slough Bridge reacts to everyday traffic loading, one 

end span and the mid span were instrumented. Due to budgetary limitations and accessibility of 

the undercarriage, focus was on only two of the three spans. This bridge is theoretically 

symmetrical, so the two end spans should act the same (see Figures 3.1, 3.2, and 3.3). The 

concrete deck was constructed to act compositely with the steel girders, but each steel girder is 

simply supported between bents. In 1951, the concrete deck was built with a 28-day concrete 

compressive strength of 3000 psi. By 1982, approximately 22% of the deck was delaminated. 

That same year, deck repair consisted of replacing reinforcing bars, installing polymer concrete 

patches, and placing a 1-inch polymer modified concrete overlay on the bridge deck.  

 

Figure 3.1 Plan view of Bridge #0283, Noyes Slough Bridge 
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Figure 3.2 Elevation view of Bridge #0283, Noyes Slough Bridge 

 

Figure 3.3 Bridge #0283, cross section of the steel girder superstructure 

This approach—instrumenting one end span and the mid span—minimized the 

instruments used and helped minimize managing the wiring harness at the undercarriage of the 

bridge. Further, an attempt was made to minimize the wiring clusters because of their 

vulnerability to those curious and those wanting to sell the wiring for cash. Prior to installing the 

instrumentation and the data monitoring system, a safe method for doing so without the expense 

of hiring a company for traffic control needed to be established. Thus, the research team 

designed and built a rolling cart that could be suspended from the lower flanges of the main west 

and east (W-E) girders (see Figure 3.4). 
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Figure 3.4 Hanging rolling platform 

The movable instrumentation platform was designed to be lifted, installed, and moved by 

only one person. When in use, the platform is approximately 15 to 20 feet above the ground. This 

distance helped protect the onboard equipment from potential damage by the public. The 

platform was designed and built so that it would roll along the bridge girders above the slough, 

and so that one person could prepare and install the instrumentation at mid span. The platform 

was built using two-by-fours with an OSB base. Four steel angles were attached at each corner. 

Welded steel wheels and bearings were used to enable the platform to roll along the steel girder 

flanges. To install the rolling platform, a chain link pulley system was designed and implemented 

using modified S-hooks to anchor the chain at any place along its length, and steel C-clamps for 

the chains to use as pulleys. Once the platform was completed and installed on the bridge, tools, 

wires, and sensors could be applied to the bridge structure.  

3.3  Instruments (Types/Configurations) 

Three types of instruments were used to monitor the response of the Noyes Slough 

Bridge: strain gauges, thermistors, and accelerometers. The sensors were monitored using a 

Campbell Scientific Model CR000 data acquisition system. Continuous monitoring was 

conducted by using a marine battery for power. Initially, the research team intended to 

communicate with the equipment from the University of Alaska Fairbanks, but because of the 

location of the bridge and the surrounding buildings and associated costs, that idea was 

abandoned. Thus, the data were downloaded periodically and examined.  
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3.3.1 Instrumentation Details 

All data was recorded by a Campbell Scientific CR5000 data logger with a AM16/32B 

multiplexer. Twelve thermistors, four accelerometers, and sixteen strain gauges were installed on 

the structure: 

Twelve (12) Thermistors 

 Each was a YSI 55033, 2252 ohm resistor supplied by ThermX Southwest 

 Two (2) were used to measure ambient air temperature 

 Ten (10) were installed on the girder webs to measure temperature distribution 

through the depth of the girder  

 Five (5) gauges were installed on two different girder webs to measure 

temperature variation over depth. The gauges were placed evenly from top 

to bottom of the web. The gauges were insulated to reflect the girder 

temperature as accurately as possible. 

Four (4) Accelerometers 

 One 20g uniaxial accelerometer was placed on top of the lower flange at mid span 

on two different girders  

 One 20g triaxial accelerometer was placed on top of the lower flange at mid span 

on two different girders  

Sixteen (16) Strain Gauges 

 Each sensor was a five (5) volt 350 ohm full bridge weldable strain gauge 

supplied by HITEC Products, Inc. (HPI) 

 Four gauges were placed at mid span on the top and bottom flanges of two 

different girders to measure the girder flexural response to load  

 Two gauges were placed at the web centerline at the ends of two different girders 

to measure girder shear  

Summary 

 Sensors were only placed on one end span (span #1) and at mid span of span #2  

 All thermistors were placed on span #2 

 Two accelerometers were placed at mid span for span #1 and two at mid span for 

span #2 

 Six strain gauges were placed at mid span of the first end span (span #1) 
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 Six strain gauges were placed at mid span of span #2  

 Four strain gauges were placed at the web centerline located at the beginning of 

the first span of the bridge (span #1) 

Each sensor was assigned a unique five-digit label to help separate and describe them. 

The first position ( X - - - ) is used to describe the sensor location (i.e., which of the two spans). 

For example, “E” is end span and “M” is mid span. The second position ( - X - - ) is used to 

determine which of the five girders the instrument is located on; that is, the girders are labeled 

from 1 to 5 or South to North. Please note, only girders 2, 3, and 5 were instrumented. The third 

position ( - - X - ) is used to denote the type of instrument; whether it is a strain gauge (S), a 

single strain gauge of a pair used for shear (R), a thermistor (T), or an accelerometer (A). The 

fourth position ( - - - X ) is used to designate the vertical position of the instrument; the highest 

position is 1. Each location may have multiple instruments above or below it, designated by a 1 

through 6, for instance, showing that there are 6 separate instruments near each other, one being 

the highest relative position vertically to the others. A list of instruments and their positions is 

shown in Table 3.1. 

Table 3.1 Sensor installation documentation 

Along bridge Girder Sensor Vertical position (1 to 6) Label 

End span 2nd Strain x x     E2S1-2 

End span 3rd Strain x x     E3S1-2 

End span 5th Strain x x     E5S1-2 

Mid span 2nd Strain x x     M2S1-2 

Mid span  3rd Strain x x     M3S1-2 

Mid span 5th Strain x x     M5S1-2 

End span  3rd Shear strain x x     E3R1-2 

End span  3rd Accelerometer       E3A1 

End span  5th Accelerometer       E5A1 

Mid span 5th Accelerometer       M5A1 

End span  3rd Thermistors x x x x x x E3T1-6 

End span  5th Thermistors x x x x x x E5T1-6 

Examples:  End span, 2nd girder strain gauges #1-2 (E2S1-2)  

Mid span, 5th girder strain gauges #1-2 (M5S1-2) 

End span, 5th girder strain gauges in shear #1-2 (E5R1-2) 

End span, 3rd girder accelerometer (E3A1) 

End span, 3rd girder thermistors #1-6 (E3T1-6) 
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3.3.2 Thermistors 

The thermistors used in this study were a simple two-wire epoxy encapsulated YSI 

44033. Created by ThermX, the thermistors are a standard 2252 ohms with an interchangeability 

tolerance of ±0.1°C and a full operating temperature range of -80°C / +75°C (see Figures 3.5 and 

3.6).  

 

Figure 3.5 Wiring diagram for a YSI 44033 

 

Figure 3.6 Thermistors before the final insulation application 

A simple thermal resistor with metal sheathing for protection, the thermistors operate 

within a 5V excitation, and record and convert resistance to temperature.  
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The thermistors were placed in a column of five along the web of two girders, just off 

center of the end span of both the 3rd and 5th girders, fastened using weather stripping to insulate 

them from the outside air. The weather stripping helped hold the instruments in place, while two 

strips of shim stock steel were tack welded to permanently fasten the system in place (see Figure 

3.6). Two thermistors were installed to hang from the girder so that an accurate ambient air 

temperature could be obtained. Altogether, twelve thermistors were installed on the bridge 

structure. Installation proceeded by first coating the steel and then insulating the thermistors with 

a two-part expanding foam. The foam insulated the sensors from the outside air. This type of 

application gives a more accurate representation of the actual temperature of the steel.  

The placement of the thermistors provides information as to how the steel girders react to 

the change in temperature as the day warms and cools. Throughout the day, every hour on the 

hour, the thermistors were sent an excitation voltage so that the temperature could be recorded.  

3.3.3 Strain Gauges 

Girder strain was measured with full bridge amplified Wheatstone bridge weldable strain 

gauges. These gauges were built and supplied by Hitec Products, Inc. (HPI). Classified as 

HBWF-35-125-6-75UP-SS (x2) and HBWF-35-125-6-50UP-SS (x14), the only difference 

between these two types of strain gauges is the length of the insulated cable; the former has 75 

feet of UP cable, which is a four-conductor polyurethane (#22 AWG)-shielded jacket cable, and 

the latter has 50 feet of cabling. It was determined that no discernable signal loss would occur 

over the extra 25 feet of cabling.  

The HPI strain gauges use Wheatstone bridge electrical circuits to ascertain the strain in 

the girders on which they are attached (see Figure 3.7). The change in strain varies linearly with 

the change in resistance. Resistance changes with the length change of the legs of the bridge 

circuit. This change in resistance alters the outgoing measurable voltage.  
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Figure 3.7 Electrical diagram of a Wheatstone bridge 

3.3.4 Accelerometers 

Four accelerometers were used to instrument the Noyes Slough Bridge; three were 

uniaxial in the z-axis (the direction of gravity), and one was triaxial. Accelerometers and strain 

gauges behave similarly; only accelerometers use a piezoelectric crystal that alters the voltage as 

it moves around, rather than a resistor stretched in a strain gauge (see Figure 3.8).  

 
Figure 3.8 Wiring diagram of a single axial accelerometer 

This voltage output is directly related to the force that is applied to the accelerometer. 

The sensor voltages were recorded at a rate of 50 times per second (50 hertz). This measurement 

provides an accurate view of how the bridge reacts to each vehicle that travels across it. The 
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acceleration data were used to signal the data logger to begin its collection cycle, rather than the 

data logger constantly gathering data while the bridge is at rest. More about the collection cycle, 

as well as how the accelerometers were used as triggers, is discussed in Section 3.5.  

3.4 Programming (Campbell Scientific/Methods/Code) 

In conjunction with the instruments described in the previous section, the Campbell 

CR5000 and an AM415 were used to compile the data in real time as the bridge responded to 

traffic. This system was programmed to record ambient air temperature and temperature 

distribution throughout the girders every hour on the hour, and programmed to record strain and 

acceleration as each vehicle crossed and activated the system. The data monitoring system was 

written with the CRBasic Editor. The system was programmed to record data for the next 50 

cycles once activated by a large enough G-force. The system resets the cycle count if a large 

enough force is recorded before the initial 50 cycles is completed.  

The system was designed to continuously monitor the accelerometers without recording 

until activated. Once activated, the CR5000 records at a rate of 50 hertz, and during that time, the 

system records acceleration data and strain data. Because of a lack of channels to place the 

temperature gauges, the AM415 multiplexer was used to act as a hub where a different channel is 

selected each time the excitation voltage is sent. The AM415 was programmed to activate every 

hour on the hour and overwrite the program even if the acceleration and strain gauges were 

occupied, momentarily taking precedence over the other gauges for only a few moments before it 

resumed recording normally.  

The rate of data gathered, even with the idle system in place, was greater than was first 

predicted, and the final amount was in the hundreds of gigabytes. The data collected over the 

year were trimmed to be more manageable; outliers and small G-forces were removed, and only 

the largest forces were examined.  

An unfortunate set of circumstances as well as ADOT&PF’s priority rating set the 

deconstruction of the Noyes Slough Bridge further and further down the list of importance. The 

delays in bridge destruction combined with the expense of handling members with lead paint 

resulted in an inability to utilize the structural steel in the bridge testing applications. This 

circumstance caused the daily data from the loggers to be largely unanalyzed, because without 

the current strength data of the structural steel, the strength lost over its age is impossible to 
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establish with just the bridge’s daily reaction data. Therefore, an alternate form of analysis was 

implemented and used to find the bridge’s strength loss. 
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 NOYES SLOUGH BRIDGE, PART 2 

This section of the Noyes Slough Bridge analysis provides the reader with a measure of 

strength loss over the life of the bridge. The measure is based on evaluation without testing the 

steel in a laboratory setting. Due to the constraints on ADOT&PF’s project workload, the bridge 

remained in use a year longer than was expected, and structural health traffic monitoring was 

conducted during the life of the structure. The strength loss was evaluated by calculating the 

strain and deflection of the steel girders caused by test loads that were measured in preselected 

positions on the structure. Calculated values were compared with the experimental data. 

4.1 Testing (Dump Truck) 

An International 7600i 6x4 day cab tipper was used to load the bridge structure with 

known loads at known positions. These known truckloads were also used to test the monitoring 

equipment (see Figure 4.1). Subsequently, the loaded truck was stopped at different locations to 

measure static response for maximum moments and maximum shears. The dynamic response of 

the bridge was measured by requesting the driver to drive across the bridge at a maximum safe 

speed. Tests were conducted by having the driver drive in both directions across the bridge.  

 

Figure 4.1 International 7600i day cab tipper 

Thirty-six static load tests were used to determine the highest possible shear stress and 

deflection on the two spans that were instrumented—the mid span and the west end span—as 

well as six dynamic loads where the dump truck reached speeds upwards of 30 mph. These tests 

were organized in a fashion that minimized the amount of time the truck was parked on the 
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bridge while the flaggers stopped traffic, and so that only a minimum number of truck turnabouts 

were needed.  

The first deflection test was conducted by having the truck driver position the front axle 

at the middle of the west end span. For the next test, the driver positioned the truck so that the 

next axle was positioned over the same midpoint. The following test was conducted by 

positioning the truck with the rear axle at the same place on the bridge. The first test was at the 

farthest outside edge of the eastbound lane. The driver moved the truck forward and repeated the 

process on the midpoint of the mid span. The next set of deflection tests was a repeat of the 

process, but westbound and on the outside edge of the westbound lane. The following set of tests 

repeated the last but differed in lane placement; this time both tests were repeated but the dump 

truck was in the inside edge of the lane. Finally, to finish the deflection tests, the dump truck was 

directed eastbound in the very center of the bridge. The truck was positioned the same as for the 

westbound tests.  

Six static shear tests were conducted next. For these tests, the driver turned the dump 

truck around and placed the front axle on a paint mark that was placed on the bridge deck prior 

to testing. This paint mark was located so that the center of the load was one girder depth 

distance away from the pier. The painted placement for the wheel was located to produce the 

largest shear stresses. This test was at the west end span of the bridge. Then the truck was turned 

around and the process was repeated for the eastbound outside edge of the lane. Once again, the 

procedure used in the previous tests was repeated, with the truck driven down the inside edge of 

the lane. Finally, the truck was positioned for an additional set of tests to evaluate the maximum 

girder shear. This set of tests corresponded to the truck stopping on painted marks with the truck 

located in the centerline of the bridge.  

The last set of tests was the dynamic test, where the driver accelerated the dump truck as 

much as possible. Due to the bridge’s proximity to the nearby intersection, reaching speeds over 

25 to 30 mph proved difficult. The truck once again followed the previous test pattern by 

accelerating westbound while staying on the outside edge of the lane and then turning around to 

repeat the process eastbound. Then, the dump truck driver repeated the previous two tests while 

being as far to the inside of the lane as possible. In the last two dynamic tests, the dump truck 

was driven along the bridge centerline eastbound and then westbound. The truck axles, wheel 

spacing, and weight were measured prior to testing on the bridge.  
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4.2  SAP2000 Model 

An analysis of the Noyes Slough Bridge was done using a structural finite element 

analysis program called SAP2000 (2014). The finite element model of the bridge was employed 

to analyze the way the bridge reacted not only to daily traffic, but also to static and dynamic field 

tests that were conducted with a pre-weighed and pre-measured ADOT&PF dump truck. The 

model showed the reaction of the bridge when new to different positions and speeds of the 

loaded dump truck. The virtual three-dimensional computer model was created from the 

specifications and as-built drawings for this bridge.  

For the model, the bridge’s main frame was mapped out and placed using basic 

frame/cable lines, which later were changed to W21x62 beams for the main E-W girders. The 

sub N-S girders had C12x25 channels at both ends. The sub N-S girders directly over the two 

piers were W12x26 beams, and the sub N-S girders between the piers were W14x30 beams. 

Once the main structure was created, the driving surface was placed and fixed to the girders. The 

driving surface was treated as a shell, or thick plate section property, and sectioned by using the 

intersection of the girders as a reference point. Each section of the driving surface was divided 

into 8 equal pieces about 45 inches square. Then, due to the concrete welded onto the girders, 

each thick plate intersection had a node that corresponded to a node on the girder 14 inches 

below it, that was connected by a 2-joint link. This link essentially fastened the driving surface to 

the girder below it, so all forces and moments were fully transferred between those nodes.  

Once the model was completed and preliminary testing of the system showed that the 

model was reacting to simple loading properly, a loading schedule was set up to the 

specifications and locations of the dump truck tests (see Figure 4.2). 
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Figure 4.2 SAP2000 model of the Noyes Slough Bridge 

After the computer model was checked to make sure that the forces were moving through 

the model correctly, the final forces in each location corresponding with the previously described 

dump truck test were placed, and the model was analyzed. This analysis gave the stresses 

throughout the model and showed how each member of the bridge reacted to the tests. Using the 

finite element model, stresses were calculated from strains and evaluated for strength 

comparison. This approach was used as the basis for determination of strength loss over the 

Noyes Slough Bridge’s life cycle.  
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 ADOT&PF BRIDGE COST DATA 

5.1  Original Maintenance Data 

The Pontis database provided by ADOT&PF was used to evaluate all maintenance data. 

The data were analyzed for fiscal years 2005 to 2010. The data were categorized in an effort to 

better understand the maintenance trends of Alaska’s bridges throughout their life cycle. 

Additionally, the data were compared with ADOT&PF’s construction records to determine the 

most economical types of bridges currently built. One aspect not covered in depth here is the 

drastic changes in temperature in the northern region versus the more temperate climates of the 

southeast region. However, discrepancies appear even in this aspect, since Valdez is under the 

northern region’s jurisdiction. With these problems aside, the data have been collected and 

analyzed to maximize the information available.  

5.2 Results of Statistical Analysis 

Some parameters are more influential than other parameters, such as spending per fiscal 

year, current age of the bridge, and type of bridge. Maintenance cost data were sorted by 

spending per fiscal year, as shown in Figure 5.1. 

 

Figure 5.1 Total expenditure by fiscal year 
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Bridges were sorted into the following 13 unique bridge types stored in the Pontis 

database: 

 Arch Deck 

 Box Beam Multi 

 Box Beam Single 

 Culvert 

 Girder and Floor beam 

 Orthotropic 

 Slab 

 Stayed Girder 

 Stringer 

 Tee Beam 

 Truss-Deck 

 Truss-Thru 

 Misc. 

The bridge types were counted and organized to show relative expenditure for each type. 

Data were then averaged over the total number of bridges for each type. The total for each type is 

in parentheses after the name type and summarized in Figure 5.2. 

 

Figure 5.2 Average expenditure per type of bridge  
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However, this number is not indicative of the actual average amount spent on each bridge 

type over the course of the five years. To derive that data, the number of bridges that were 

actually maintained were counted and compared with the total number of bridges in each 

category, as provided in Figure 5.3. 

 

Figure 5.3 Percent of bridges maintained 
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In Figure 5.4, the number of bridges maintained is in parentheses after the name type  

Data were separated into bridge type and how the bridges compare with one another over 
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Figure 5.4 Average total expenditures per type of maintained bridges  

 

Figure 5.5 Expenditures by type per year  
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Annual expenditures for maintenance were compared by bridge type. The comparison 

was made by evaluating the percentage of total maintenance costs for bridges in Alaska. Figure 

5.6 shows that most of each year’s expenditures were made on Tee Beams and Stringers, which 

is due to there being more bridges in those two categories. 

 

Figure 5.6 Percent of expenditures by type per year of maintained bridges 
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Figure 5.7 Average expenditure by type per year of maintained bridges  
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Figure 5.8 Average percent of expenditures by type per year of maintained bridges  
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Figure 5.9 Stringer expenditures by age 

 

Figure 5.10 Tee Beam expenditures by age 
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Figure 5.11 Truss-Thru expenditures by age  
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Once these steps are taken, the data must be sifted through using projection readers—a rather 

slow process and difficult to do for long periods.  

It was not feasible to find the final construction costs for all of Alaska’s bridges due to 

the time and effort needed for this task. A few small changes could be made by ADOT&PF that 

would dramatically increase the feasibility of future economic analyses. Some of these changes 

include but are not limited to the following: 

 organize databases according to final LPOs and final costs 

 cross-reference maintenance databases 

 organize final reports for each project 

Currently, the information is simply too spread out for a full economic analysis to be 

completed. Implementation of Bridge Life-Cycle Cost Analysis will not be practical until final 

construction costs are organized in such a fashion as to facilitate that effort. 
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 ESTIMATING THE LIFE CYCLE COST 

There are multiple methods of determining the life cycle costs of bridges. The most 

common method is to determine the present worth or equivalent annual cost of all expenditures 

on the bridge throughout its life. This method is commonly found in engineering economy 

textbooks. The difficulty is that the life of the structure must be assumed at the beginning. In 

most life cycle cost determinations, the design life of the structure is used, knowing that, 

generally, the expected life is considerably longer. As a result, the life cycle cost of the bridge 

may be misleading. 

A second method of estimating life cycle cost is using what is commonly called the 

service life. In principle, the approach is quite straightforward. The present worth or equivalent 

cost of the structure is computed for each life span beginning in year zero through the life, which 

provides the lowest life cycle cost. Service life could be shorter or longer than the design life. 

The service life does not directly assess the structural life, but simply estimates the life, which 

minimizes the life cycle costs. 

Consider the following example: The initial cost of a bridge is $2 million with a design 

life of 75 years. The annual cost of maintenance is $3000 in Year 1 with an anticipated increase 

in cost of 5% per year. The deck will require repaving every 15 years at a cost of $150,000. An 

interest rate of 4% is assumed. Inflation will not be considered in this case. In determining 

service life using the equivalent annual cost method, it is assumed that the reader has an 

understanding of engineering economy.  

The life cycle cost for Year 1 would be the (principle)(Capital Recovery Factor) plus the 

maintenance costs in Year 1 or ($2 million)(1.04) + 1000 = $2,081,000.  

Repeat this method for Year 2.  

($2 million)(A/P,4,2) + [1000(1.0025)(P/F,4,2) + 1000)(A/P,4,2)] 

= ($2 million)(.5302) + [1025(.9246) + 1000](.5302) = $1,061,432 

Since the equivalent annual cost for Year 2 is less than for Year 1, compute the 

equivalent annual cost for Year 3. Repeat these steps until a minimum is found.  

This method lends itself very well to a spreadsheet, and Excel has financial functions 

built in that easily allow these computations. The graph in Figure 6.1 shows a minimum life 

cycle cost of about $109,873. For this example, those costs represent spending at the end of Year 

69. Again, this value represents the economic service life of the structure and does not 
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necessarily relate to the structural or functional life. However, if costs during the life of the 

structure can be anticipated, they can easily be incorporated into the analysis. For example, if it 

is anticipated that an additional lane will be added in Year 50, the cost of the addition of that lane 

can be incorporated into the analysis. 

 

Figure 6.1 Minimum service life for a bridge structure 

The advantage of the service life approach is that the analysis is not tied to a fixed life. 

Rather, the economic life of each structure is estimated, and the associated cost of that structure 

is estimated. Design alternatives are then compared based on this life cycle cost. As data become 

available, the analysis can be tuned based on those data.  

The challenge becomes the replacement strategy. Since bridge construction is a long-term 

investment with no clear replacement requirement, it is assumed that the planning horizon is 

infinite. Further, the service life does not necessarily represent optimal replacement timing. As 

the structure ages, both structural and functional changes may occur. Consequently, the 

assumptions made at the design stage may become invalid. A change to the structure or 
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replacement strategy may emerge, which then requires an analysis that determines how best to 

address the new need.  

The existing bridge, called the defender, will be compared with all alternatives, called the 

challengers. Since the costs incurred to date are sunk costs, they cannot be considered in any of 

the decision strategies. The steps listed below should be followed in selecting a replacement 

strategy: 

1. Compute the service life of both the defender and the challenger.  

2. Compare the service lives. If the cost of the defender is higher than the cost of the 

challenger, choose the challenger. If the cost of the challenger is higher than that of 

the defender, choose the defender.  

3. If the defender should not be replaced now, estimate when it should be replaced by 

the challenger.  

To demonstrate this process, two scenarios will be considered. The first scenario is 

whether the bridge should be replaced in-kind in Year 71. The second scenario is whether to add 

a lane to the existing bridge in Year 50 to accommodate traffic or to replace the bridge.  

If in Year 71, the question is whether to replace the bridge or to replace the bridge in-

kind, the process is to look at the cost of maintaining the bridge for one more year and compare 

that cost with the economic life of the new bridge. Since the bridge is being replaced in-kind, the 

cost of maintaining the existing bridge one additional year must be less than the economic 

service life of the new bridge, which is 69 years, with an equivalent annual cost of $109,873. 

Looking at Figure 6.1 the estimated cost of maintaining the bridge in Year 70 is $86,993 plus a 

capital cost of $150,000 for deck replacement. However, a deck inspection indicates the deck 

does not need repairs for four years. Thus, the cost of routine repairs is less than $109,873. This 

calculation suggests that the bridge be left in place for one more year. The process described is 

continued until the costs exceed the economic life costs of the challenger. If only routine 

maintenance is performed, the bridge would be replaced in Year 75 if the cost projected is 

accurate. In truth, costs should be evaluated with current data rather than projected design data.  

The second scenario essentially compares two alternatives. The first alternative is to 

retrofit the bridge with an additional lane to accommodate traffic. The second alternative is to 

build a new bridge to accommodate additional traffic. Both alternatives will occur in Year 50.  
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In this case, the service lives of the two alternatives are compared. Alternative 1 assumes 

a retrofit cost of $1,000,000, which includes the cost of resurfacing the existing deck and some 

modifications to reduce routine maintenance costs. Because the bridge has aged, the maintenance 

costs will be higher than a new bridge at $15,000 per year at a growth rate of 5% per year. The 

estimated cost of resurfacing the deck increases to $175,000 every 10 years. Using the same 

procedure as before, the service life of the bridge after rehabilitation and widening is an 

additional 47 years at an equivalent annual cost of $146,737. 

Assume a new bridge can be constructed for $4 million with an initial maintenance cost 

of $2000 per year with an annual growth rate of 3% due to new design technologies. It is 

anticipated that the deck will be re-decked every 15 years at a cost of $225,000. In this case, the 

service life is 81 years at an equivalent annual cost of $104,409. Replacing the bridge becomes 

the most economically attractive decision.  

As always, intrinsic values, including available funding, environmental impacts, and 

community input, must be considered. In summary, the economic life approach offers a number 

of advantages over traditional life cycle cost analysis for infrastructure that has a very long life. 

The most attractive advantage is that the procedure does not require assigning an analysis life. 

Rather, the procedure determines the life at which the life cycle costs are at a minimum. This 

method allows ready comparison of multiple alternatives with long lives and an analysis of 

modification of potential changes in strategy at any point in the life of the structure. While the 

procedure is somewhat more complex, spreadsheets allow for rapid analysis. Once the 

spreadsheet is set up, it can be rapidly altered to accommodate changes in assumptions or 

modified for other alternatives.  
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 COMPARATIVE RESPONSE (STRUCTURAL DETERIORATION) 

7.1 Comparison 

The research findings from this study show that there were noticeable and measurable 

differences in the strain behavior of the Noyes Slough Bridge at the end of its life cycle when 

compared with its theoretical beginnings. Strain gauges were used to calculate strength loss. 

Using measured changes in strain in the bridge’s girders, a comparison was made between the 

bridge’s condition at the time of evaluation and its condition at the time of original construction. 

With this method, changes in stress could be quite easy to find.  

Not every strain gauge responded as predicted. Many of the strain gauges showed signs 

of change during the test, yet after analysis, these changes proved to be negligible. Therefore, 

only strain gauges that showed changes in strain that paralleled the SAP2000 model were used 

for the final analysis. Also, for the final analysis, only girders that experienced the greatest 

amount of strain from the location of the dump truck were used for the most accurate picture of 

strength loss.  

Careful consideration of the data analysis indicated a clear trend of increasing strain, or 

increasing stress, over the life of the structure. Figures 7.1, 7.2, and 7.3 show what the strain in 

the beams should have been when the bridge was first built, as compared with the strain in the 

beams during the test. 
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Figure 7.1 Strain test results comparison in End Span Beam #2 

 

Figure 7.2 Strain test results comparison in End Span Beam #3 
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Figure 7.3 Strain test results comparison in Mid Span Beam #2 

In each of these cases, it can be seen conclusively that beam strains increased and, in 

turn, their stress increased. In many cases, the increase was well over 100%. The stress values 

associated with these increases are shown in Figures 7.4, 7.5, and 7.6.  

 

Figure 7.4 Changes in stress comparison in End Span Beam #2 
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Figure 7.5 Changes in stress comparison in End Span Beam #3 

 

Figure 7.6 Changes in stress comparison in Mid Span Beam #2 
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Nearly every test showed a marked increase in strain and stress in the beams when 

compared with its SAP2000 theoretically calculated values based on the original (new) 

construction condition. With an average stress increase of 43.35 ksi in End Span Beam #2, 27.60 

ksi in End Span Beam #3, and 52.32 ksi in Mid Span Beam #2, it is easy to see a direct 

correlation between the use of 62 years and the bridge’s theoretical beginnings. These stress 

increases are based on the concept that stress is proportional to strain (linear behavior). Clearly, 

in this case, parts of the structure may have experienced yield, and the member carrying capacity 

may have been redistributed so that areas less stressed would contribute to the load-carrying 

capacity of the structure. These stresses were calculated from the strains measured in the gauges; 

therefore, assuming that the stress increases of these beams show the beams have undergone 

yielding deformation is reasonable. The minimum yield strength of these beams was Fy = 36 ksi, 

and the effective yield stress was Fye = 54 ksi. The effects of traffic and weather caused the 

Noyes Slough Bridge beams to experience significant states of stress, and these effects led to the 

redistribution of stress throughout the rest of the beam. 

7.2  Maintenance Data Compared with Noyes Slough Bridge 

The Noyes Slough Bridge is classified as a steel Stringer type with a reinforced concrete 

deck, placing it in the largest category for bridge types in the state of Alaska. In 2013, Alaska 

had 334 bridges with the classification of Stringer. This means that a lot of money was spent 

maintaining these bridges; however, as noted in Chapter 5, Stringer bridges are some of the 

cheapest to maintain per year, per bridge, making them a very efficient bridge type—little 

maintenance cost and a long life span. 

When Alaska achieved statehood in 1959, the Noyes Slough Bridge was already about 

ten years old. The ADOT&PF was decentralized, and most of its records were transferred. The 

original construction cost of the bridge has not been found; therefore, an accurate assessment of 

its full life cycle is not possible. Prior to this study, the bridge was decommissioned after visual 

inspections. During this study, the bridge was replaced. Construction of the new Noyes Slough 

Bridge, located near the intersection of Illinois Street and College Road in Fairbanks, was part of 

a street improvement project for Illinois Street.  
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7.3  Importance of Construction Cost 

The initial construction costs of many bridges in Alaska are not available. Only 28 initial 

construction costs from 5 different bridge types were found. Of those bridges, nearly all of them 

were 40 years old, or younger, with the average being 35 years old. Only the most current 

records on bridges are readily available from ADOT&PF. Table 7.1 shows the 5 types of bridges 

that rank the most cost-effective by initial cost plus yearly maintenance over their life span: 

Table 7.1 Summary of costs for Alaska bridge types 

Bridge Type Initial Cost Plus Annual Maintenance Cost 

Arch Deck $1,195,088 

Box Beam $1,475,702 

Tee Beam $4,443,132 

Stringer $7,199,380 

Orthotropic $36,812,406 

 

The list provided in Table 7.1 is only a partial list of the bridge types in Alaska. In the 

case of both the Arch Deck bridge and the Orthotropic bridge, only one entry was found. The 

Noyes Slough Bridge falls under the category of Stringer bridges and, therefore, according to the 

data, is one of the most expensive bridge types on this list. Without proper data and accurate 

records, it is nearly impossible to analyze the work of so many engineers and contractors who 

labored to create before us. Therefore, it is vital that a system, easily accessible and instantly 

maintained by the ADOT&PF, be implemented. Pontis is the current software system in place at 

ADOT&PF, and it has a long way to go before it can be considered a central system of data 

access and storage throughout the department.  



45 

 CONCLUSIONS 

Throughout the course of this study, many insights were gained,into the way a bridge 

reacts under live load, to the cost of maintaining bridges throughout the state of Alaska and how 

the life cycle cost of bridges might be determined.  

A clear loss of strength was found in the Noyes Slough Bridge; the structure exceeded 

twice the strain it was designed for when new. All bridges throughout Alaska were cataloged and 

then sorted by bridge type. The cost to maintain each bridge was determined, and the 

maintenance costs were statistically analyzed. Initial construction costs were missing for many of 

these bridges, including the Noyes Slough Bridge, so though its bridge type is one of the 

cheapest to maintain, an accurate cost benefit analysis of the bridge was impossible.  

The Noyes Slough Bridge was demolished in the summer of 2013, ending any further 

data that could have been recorded from traffic usage over the girders. While replacing the 

bridge was the ultimate plan, demolition occurred later than planned due to higher ADOT&PF 

priorities. Essentially, with this study, much more is now known about the Noyes Slough Bridge 

and its relationship to the rest of the bridges throughout Alaska.   

The application of the service life cycle costing approach has a number of advantages 

over the traditional life cycle cost approach.  A bridge has essentially three lives; structural, 

functional and service.  All of these lives are highly variable.  For example the structural life of a 

bridge can be extended almost indefinitely with the right repairs.  The service life approach does 

not assume a life.  Rather it estimates the life that provides the lowest life cycle cost.  Doing so 

allows comparisons of alternatives assuming an infinite planning horizon. 
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